Selected recipes for inverse problems

Ferréol Soulez

Notations	Eigenvalue & eigenvectors of $\mathbf{H} \in \mathbb{C}^{N imes N}$
α (lower case) scalar α^* complex conjugate of α $\boldsymbol{x} \in \mathbb{C}^N$ (boldface lower case) complex vector N (boldface lower case) complex vector $\mathbf{H} \in \mathbb{C}^{N \times M}$ (boldface upper case) cardinal (number of elements) $\mathbf{H} \in \mathbb{C}^N \to \mathbb{C}^M$ (boldface upper case) linear operator (matrix) $f: \mathbb{C}^N \to \mathbb{C}^M$ (lower case) function $L^2(\mathbb{R}^N)$ space of squared-integrable function $\mathcal{H}: L^2(\mathbb{R}^N) \to L^2(\mathbb{R}^M)$ calligraphic upper case) operatoracting on functions	$\begin{split} \lambda_i \in \mathbb{C} \text{ and } \boldsymbol{v}_i \in \mathbb{C}^N \text{ are the } i^{\text{th}} \text{ eigenvalue and eigenvector respectively.} \\ \text{They satisfy:} \\ & \mathbf{H} \boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i \\ \text{It leads to the eigendecomposition:} \\ & \mathbf{H} = \mathbf{Q} \text{diag}(\boldsymbol{\lambda}) \mathbf{Q}^{-1}, \\ \text{where the columns of } \mathbf{V} \text{ are the } N \text{ eigenvectors of } \mathbf{H}. \\ & \blacksquare \boldsymbol{\lambda} = \text{eig}(\mathbf{H}) \text{ is the spectrum of } \mathbf{H}, \\ & \blacksquare \boldsymbol{C} = \frac{\max(\boldsymbol{\lambda})}{\min \boldsymbol{\lambda} } \text{ is the condition number}, \\ & \blacksquare \text{ rank}(\mathbf{H}) \text{ is the number of non-zero element of } \boldsymbol{\lambda}, \\ & \blacksquare \text{ if } \lambda_i \neq 0, \forall i, \mathbf{H} \text{ is invertible and } \mathbf{H}^{-1} = \mathbf{Q} \text{diag}(\boldsymbol{\lambda})^{-1} \mathbf{Q}^{-1}, \end{split}$
$[\mathbf{H}, \mathbf{z}] = \sum_{i=1}^{n} H_{i} \mathbf{z}_{i}$ yester matrix product	
$[\mathbf{H} \mathbf{G}]_{m} = \sum_{n} H_{m,n} x_{n}$ vector matrix product $[\mathbf{H} \mathbf{G}]_{m} = \sum_{n} H_{n,n} G_{n,n}$ matrix product	Peculiar matrices
$\mathbf{H} \left(\alpha \mathbf{x} + \beta \mathbf{y} \right) = \alpha \mathbf{H} \mathbf{x} + \beta \mathbf{H} \mathbf{y}$ interval	$\blacksquare \text{ Unitary: } \mathbf{Q}^{\dagger} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\dagger} = \mathbf{I}$
$(\mathbf{x} \times \mathbf{y})_n = x_n y_n$ element wise product	Hermitian: $\mathbf{H}' = \mathbf{H}$ and $\mathbf{H} = \mathbf{Q} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{Q}'$ with $\boldsymbol{\lambda} \in \mathbb{R}^{n}$ and \mathbf{Q} unitary
$\begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}$	Positive semi-definite: $\lambda_i \ge 0, \ \forall i \iff x^{\dagger} \mathbf{H} x \ge 0, \ \forall x$
	Toeplitz: $H_{i,j} = h_{i-j}$,
$\mathbf{I} = \begin{bmatrix} 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$ identity matrix	Circulant: Toeplitz with $H_{i,j} = h_{(i-j) \mod N}$
$\begin{bmatrix} 0 & 0 & 0 & \dots & 1 \end{bmatrix}$	Troco and datarminant
$\begin{bmatrix} a_0 & 0 & 0 & \dots & 0 \end{bmatrix}$	
$\mathbf{A} = \operatorname{diag}(\mathbf{a}) = \begin{bmatrix} 0 & a_1 & 0 & \dots & 0 \\ 0 & 0 & a_2 & \dots & 0 \end{bmatrix}$ diagonal matrix	trace: $\operatorname{tr}(\mathbf{H}) = \sum_{n} H_{n,n} = \sum_{n} \lambda_{n}$
	$\operatorname{tr}(\mathbf{H}^{I}) = \operatorname{tr}(\mathbf{H})^* \qquad \qquad \operatorname{tr}(\mathbf{H}^{G}) = \operatorname{tr}(\mathbf{G}^{H})$
$\begin{bmatrix} 0 & 0 & 0 & \dots & a_{N-1} \end{bmatrix}$	$u(\alpha \mathbf{n} + \beta \mathbf{G}) = \alpha u(\mathbf{n}) + \alpha u(\mathbf{n})$
	determinant: det(H) = $\prod_n \lambda_n$
Adjoint, scalar product	$\det(\mathbf{H}) \neq 0 \iff \mathbf{H} \text{ is invertible} \qquad \det(\mathbf{H}^{\dagger}) = \det(\mathbf{H})^*$
$(H^{\dagger})_{i,i} = H^*_{j,i}$ adjoint (transpose conjugate)	$det(\mathbf{H}\mathbf{G}) = det(\mathbf{H}) det(\mathbf{G}) \qquad \qquad det(\mathbf{H}^{-1}) = 1/det(\mathbf{H})$
$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{n=0}^{N-1} x_n^* y_n = \boldsymbol{x}^{\dagger} \boldsymbol{y}$ dot (or scalar or inner) product	
$\langle \mathbf{H} \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{x}, \mathbf{H}^{\dagger} \boldsymbol{y} \rangle$ adjoint formal definition	Singular value decomposition
$(\alpha \mathbf{H} + \beta \mathbf{G})^{\dagger} = \alpha^* \mathbf{H}^{\dagger} + \beta^* \mathbf{G}^{\dagger}$	For all matrices $\mathbf{H} \in \mathbb{C}^{N \times M}$ there exists two unitary matrices $\mathbf{U} \in \mathbb{C}^{N \times N}$ and $\mathbf{V} \in \mathbb{C}^{M \times M}$ and a matrice matrix diagram for the second seco
$\left(\mathbf{H}\mathbf{G}\right)^{\dagger}=\mathbf{G}^{\dagger}\mathbf{H}^{\dagger}$	$\Sigma \in \mathbb{C}^{N \times M}$ (singular values: $\sigma_i = \Sigma_{i,i}$, $\forall i \leq \min(M, N)$) subject to:
	${f H}={f U}{f \Sigma}{f V}^\dagger$
Norms	columns of U are eigenvectors of $\mathbf{H} \mathbf{H}^{\dagger}$,
$\ a\ ^2 - \langle a, a \rangle - a^{\dagger}a - \sum^{N-1} a ^2 - \sum^{N-1} a^* a = \ell^2$ norm	Columns of v are eigenvectors of $\mathbf{H}^{\dagger}\mathbf{H}$, $\Sigma = \sqrt{\text{diag}\left(\text{eig}\left(\mathbf{H}\mathbf{H}^{\dagger}\right)\right)}.$
$\ \boldsymbol{x}\ _{2} - \langle \boldsymbol{x}, \boldsymbol{x} \rangle - \boldsymbol{x} \cdot \boldsymbol{x} - \sum_{n=0} \boldsymbol{x}_{n} - \sum_{n=0} \boldsymbol{x}_{n} \boldsymbol{x}_{n} - \boldsymbol{x} \cdot \boldsymbol{x}_{n} + \mathbf{x} \cdot \mathbf{x}_{n} + \mathbf{x} \cdot$	$\blacksquare \ \mathbf{H}\ _F^2 = \sum_i \sigma_i^2$
$\ \boldsymbol{x} + \boldsymbol{y}\ ^2 - \ \boldsymbol{x}\ ^2 + \ \boldsymbol{y}\ ^2 + 2 / \boldsymbol{x} \boldsymbol{y} $ $(Cauchy-bernwardz)$	\square rank(H): number of non zero singular values,
$\ \boldsymbol{x} - \boldsymbol{y}\ _{2}^{2} = \ \boldsymbol{w}\ _{2}^{2} + \ \boldsymbol{y}\ _{2}^{2} + 2\langle \boldsymbol{w}, \boldsymbol{y} \rangle$ $\ \boldsymbol{x}\ _{p}^{p} = \sum^{N-1} \boldsymbol{x}_{n} _{p}^{p} n \ge 1$ $p \text{ norm}$	
$\ \boldsymbol{x}_{\parallel p} - \boldsymbol{y}_{\parallel n=0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Inversion lemmas & woodbury identity
$\ \mathbf{H}\ ^2 - \sum \mathbf{H}_{\perp} ^2 - \operatorname{tr}(\mathbf{H}^{\dagger}\mathbf{H}) \qquad \text{Frobenius norm}$	$\mathbf{B}^{-1}\mathbf{V}(\mathbf{A} - \mathbf{U}\mathbf{B}^{-1}\mathbf{V})^{-1} = (\mathbf{B} - \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$
$\ \mathbf{II}\ _F = \sum_{n,m} \mathbf{II}_{i,j} = \mathrm{or}(\mathbf{II}^*\mathbf{II})$ Frobenius form	$ (\mathbf{A} - \mathbf{U}\mathbf{B} \mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U} (\mathbf{B}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1} \mathbf{V}\mathbf{A}^{-1} $
Inverse	

 $\mathbf{H} \in \mathbb{C}^{N \times N}$ is called invertible (also nonsingular or nondegenerate) if

 $\mathbf{H}\mathbf{G} = \mathbf{G}\mathbf{H} = \mathbf{I}$

for any \mathbf{H}, \mathbf{M} invertible

there exists a matrix **G** such that:

 $\left(\mathbf{H}\,\mathbf{M}\right)^{-1} = \mathbf{M}^{-1}\,\mathbf{H}^{-1}$

 $\left(\mathbf{H}^{\dagger}\right)^{-1} = \left(\mathbf{H}^{-1}\right)^{\dagger}$

 $\mathbf{G} = \mathbf{H}^{-1}$ is unique and is the inverse of \mathbf{H}

Moore-Penrose pseudo inverse

The pseudo inverse of $\mathbf{H} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}$ writes $\mathbf{H}^{+} = \mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{\dagger}$ with $\Sigma_{i,i}^{+} = \begin{cases} \Sigma_{i,i}^{-1} \text{ if } \sigma_{i} \neq 0, \\ 0 \text{ otherwise.} \end{cases}$

- $\blacksquare \mathbf{H} \mathbf{H}^+ \mathbf{H} = \mathbf{H} \text{ and } \mathbf{H}^+ \mathbf{H} \mathbf{H}^+ = \mathbf{H}^+$
- $\blacksquare \mathbf{H} \text{ is square and } \operatorname{rank}(\mathbf{H}) = N \Rightarrow \mathbf{H}^+ = \mathbf{H}^{-1}$
- **H** is broad: rank(**H**) $\leq N$ and $\mathbf{H}^+ = \mathbf{H}^{\dagger} \left(\mathbf{H} \mathbf{H}^{\dagger} \right)^{-1}$
- **H** is tall: rank(**H**) $\leq M$ and **H**⁺ = (**H**[†]**H**)⁻¹ **H**[†]

Selected recipes for inverse problems

linearity

Ferréol Soulez

Derivatives

$J_{i,j} = \left[\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{y}}\right]_{i,j} = \frac{\partial x_i}{\partial y_j}$	Jacobian matrix
$[\nabla f]_i = \frac{\partial f}{\partial x_i}$	Gradient vector
$[\nabla^2 f]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$	Hessian matrix

Derivation rules

 $\partial (\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \partial \mathbf{A} + \beta \partial \mathbf{B}$ $\partial (\mathbf{A} \mathbf{B}) = (\partial \mathbf{A}) \mathbf{B} + \mathbf{A} (\partial \mathbf{B})$ $\partial (\mathbf{A}^{-1}) = -\mathbf{A}^{-1} (\partial \mathbf{A}) \mathbf{A}^{-1}$ $\partial \left(\mathbf{A}^{\dagger} \right) = \left(\partial \mathbf{A} \right)^{\dagger}$ $\frac{\partial x^{\dagger} y}{\partial x} = \frac{\partial y^{\dagger} x}{\partial x} = y$ $rac{\partial oldsymbol{x}^{\dagger}\mathbf{A}oldsymbol{x}}{\partialoldsymbol{x}}=\left(\mathbf{A}+\mathbf{A}^{\dagger}
ight)oldsymbol{x}$ $\frac{\partial f \circ g(\boldsymbol{x})}{\partial \boldsymbol{x}} = \sum_{m=0}^{M-1} \frac{\partial f}{\partial u_m} \frac{\partial u_m}{\partial \boldsymbol{x}} \Big|_{\boldsymbol{u}=q(\boldsymbol{x})}$ chain rule $rac{\partial (\mathbf{A} \, \boldsymbol{x} - \boldsymbol{y})^\dagger \mathbf{B} (\mathbf{A} \, \boldsymbol{x} - \boldsymbol{y})}{\Delta \mathbf{A}} = \left(\mathbf{B} + \mathbf{B}^\dagger
ight) \, \left(\mathbf{A} \, \boldsymbol{x} - \boldsymbol{y}
ight) \, \boldsymbol{x}^\dagger$

Continuous Fourier transform

$\widehat{f}(\nu) = \mathcal{F}(f)(\nu) = \int_{-\infty}^{+\infty} f(t) e^{-2i\pi\nu t} dt$	forward
$f(t) = \mathcal{F}^{-1}\left(\widehat{f}\right)(t) = \int_{-\infty}^{+\infty} f(\nu) \mathrm{e}^{2\mathrm{i}\pi\nu t} \mathrm{d}\nu$	inverse
$\mathcal{F}\left(\alpha f + \beta g\right) = \alpha \widehat{f} + \beta \widehat{g}$	linearity
$\mathcal{F}\left(f(t-t_0)\right) = e^{-2i\pi\nu t_0}\widehat{f}(\nu)$	shift
$\mathcal{F}\left(\mathrm{e}^{2\mathrm{i}\pi\nu_{0}t}f(t)\right)=\widehat{f}(\nu-\nu_{0})$	modulation
$\mathcal{F}\left(f(at)\right) = \frac{1}{ a }\widehat{f}\left(\frac{\nu}{a}\right)$	scaling
$\mathcal{F}\left(f^{*}\right)\left(\nu\right)=\widehat{f}^{*}(-\nu)$	conjugation
$\int_{-\infty}^{+\infty} \left \widehat{f}(\nu) \right ^2 \mathrm{d}\nu = \int_{-\infty}^{+\infty} \left f(t) \right ^2 \mathrm{d}t$	Plancherel-Parseval
$\widehat{f}(0) = \int_{-\infty}^{+\infty} f(t) \mathrm{d}t$	integration
$\mathcal{F}\left(f^{(n)}\right) = (2\mathrm{i}\pi\nu)^n\widehat{f}(\nu)$	differentiation
$\mathcal{F}\left(f\ast g\right)=\widehat{f}\widehat{g}$	convolution
$\mathcal{F}\left(f\star f\right) = \left \widehat{f}\right ^2$	autocorrelation

Discrete Fourier Transform

$\mathbf{F} = \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$	$\begin{array}{c} 1\\ \omega\\ \omega^2\\ \vdots\\ \omega^{N-1} \end{array}$	$\begin{matrix} 1\\ \omega^2\\ \omega^4\\ \vdots\\ \omega^{2(N-1)}\end{matrix}$	···· ··· ··.	$\begin{bmatrix} 1\\ \omega^{N-1}\\ \omega^{2(N-1)}\\ \vdots\\ \omega^{(N-1)(N-1)} \end{bmatrix}$	with $\omega = e^{-\frac{-2i\pi}{N}}$ the N^{th} root of unity.
$\mathbf{F}^{-1} = \mathbf{f}$	$\frac{1}{N}\mathbf{F}^{\dagger}$				orthogonality
$\mathbf{U} = \frac{1}{\sqrt{2}}$	$\overline{\mathbf{F}}$				\mathbf{U} is unitary
$\ m{x}\ _2^2 =$	$\frac{1}{N} \ \mathbf{F} \boldsymbol{x} \ $	$\ _{2}^{2}$			Plancherel-Parseval
$\ m{x}\ _1 \leq$	$\ \mathbf{F} x\ $	$_{1} \leq N$	$\ m{x}\ _1$		

Circular convolution matrix H

 $H_{0,i} = h_i$ impulse response (PSF) $\mathbf{H} = \mathbf{F}^{-1} \operatorname{diag}(\widehat{\boldsymbol{h}}) \, \mathbf{F}$ diagonalization by Fourier $\widehat{h} = \mathbf{F} h$ eigenvalues spectrum

Continuous probability distribution

 $\boldsymbol{x} \in \mathbb{C}^N$ is a continuous random vector, it has a probability density function (pdf) $f_X(\boldsymbol{x})$ such that, for all $\mathbb{A} \subseteq \mathbb{C}^N$:

 $\Pr(\boldsymbol{x} \in \mathbb{A}) = \int_{\mathbb{A}} f_X(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$ $\bar{\boldsymbol{x}} = \mathrm{E}(\boldsymbol{x}) = \langle \boldsymbol{x} \rangle = \int_{-\infty}^{+\infty} \boldsymbol{x} f_X(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}$ $E(\alpha \boldsymbol{x} + \beta \boldsymbol{y} + \gamma) = \alpha E(\boldsymbol{x}) + \beta E(\boldsymbol{y}) + \gamma$ $\mathbf{C}_{\boldsymbol{x},\boldsymbol{y}} = \operatorname{Cov}\left(\boldsymbol{x},\boldsymbol{y}\right) = \operatorname{E}(\boldsymbol{x}\boldsymbol{y}^{\dagger}) - \operatorname{E}(\boldsymbol{x})\operatorname{E}(\boldsymbol{y})^{\dagger}$ $\mathbf{C}_{\boldsymbol{x}} = \operatorname{Cov}\left(\boldsymbol{x}, \boldsymbol{x}\right) = \operatorname{E}(\boldsymbol{x} \boldsymbol{x}^{\dagger}) - \operatorname{E}(\boldsymbol{x}) \operatorname{E}(\boldsymbol{x})^{\dagger}$ $\mathbf{C}_{\boldsymbol{x}}$ is an Hermitian matrix of size $N \times N$.

Expectation (mean) linearity Cross-covariance Covariance

Independence & Uncorrelation

$\Pr(X \mid Y) = \Pr(X)$		Independence
$f_{X,Y}({oldsymbol x},{oldsymbol y})=f_X({oldsymbol x})f_Y({oldsymbol y})$		Independence
$\operatorname{Cov}\left(\alpha\boldsymbol{x}+\beta\boldsymbol{y}+\gamma\right)=\alpha^{2}\operatorname{Cov}\left(\boldsymbol{x}\right)+\beta$	$\beta^2 \operatorname{Cov}(\boldsymbol{y})$	Uncorrelation
$\operatorname{Cov}\left(\boldsymbol{x},\boldsymbol{y}\right)=0$		Uncorrelation
independence \Rightarrow uncorrelation	uncorrelation \Rightarrow	independence
$\Pr(X \mid Y) = \frac{\Pr(Y \mid X) \Pr(X)}{\Pr(Y)}$		Bayes rule

Convexity

$f: \mathbb{C}^N \to \mathbb{R}$ is strictly convex if and only if:	
$f\left(\lambda \boldsymbol{x} + \left(1 - \lambda\right) \boldsymbol{y}\right) < \lambda f(\boldsymbol{x}) + \left(1 - \lambda\right) f(\boldsymbol{y})$	$\forall \boldsymbol{x}, \boldsymbol{y}, \lambda \in]0, 1[.$
$oldsymbol{x}^+ = rgmin_{oldsymbol{x}} f(oldsymbol{x})$	global minimum
$\boldsymbol{p} \in \partial f(\boldsymbol{x}) \Leftrightarrow f(\boldsymbol{x}) - f(\boldsymbol{x}') \ge \langle \boldsymbol{p}, \boldsymbol{x} - \boldsymbol{x}' \rangle \ , \forall \boldsymbol{x}'$	subgradient

Gradient descent

 $f: \mathbb{C}^N \to \mathbb{R}$ is convex and differentiable with Lipschitz gradient L: $\|\nabla \boldsymbol{x} - \nabla \boldsymbol{y}\|_2 \leq L \|\boldsymbol{x} - \boldsymbol{y}\|_2$ The following sequence converges toward a minimizer of f in O(1/k):

 $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \gamma \nabla f(\boldsymbol{x}^{(k)}) \text{ with } \gamma \in]0, 1/L]$

Newton's method

 $f: \mathbb{C}^N \to \mathbb{R}$ is convex and twice differentiable, the sequence: $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \left(\nabla^2 f(\boldsymbol{x}^{(k)})\right)^{-1} \nabla f(\boldsymbol{x}^{(k)})$

converges toward a minimizer of f in $O(1/k^2)$:

Projection

 $\mathbf{P} \in \mathbb{C}^{N \times N}$ is a projection on a subset $\mathbb{S} \subseteq \mathbb{C}^N$ and its indicator $\imath_{\mathbb{S}}$: $\mathbf{P}\,\boldsymbol{x} = \operatorname*{arg\,min}_{\boldsymbol{y}} \left(\imath_{\mathbb{S}}(\boldsymbol{y}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^2 \right) \quad \text{with } \imath_{\mathbb{S}}(\boldsymbol{x}) \begin{cases} 0 & \text{if } \boldsymbol{x} \in \mathbb{S} \,, \\ +\infty \text{ otherwise} \,. \end{cases}$ $\mathbf{P}\mathbf{P}=\mathbf{P}$. idempotent $\|\mathbf{P} x - \mathbf{P} y\|_{2} \le \|x - y\|_{2}$ \mathbb{S} is convex $\Rightarrow \mathbf{P}$ is non-expansive $\boldsymbol{x}^{(k+1)} = \mathbf{P} \left(\boldsymbol{x}^{(k)} - \gamma \nabla f(\boldsymbol{x}^{(k)}) \right)$ projected gradient descent

Proximity operator

f: a lower semi-continuous convex function, its proximity operator is:

$$\operatorname{prox}_{f}(\boldsymbol{y}) = \operatorname{arg\,min}_{\boldsymbol{y}} \left(f(\boldsymbol{y}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|^{2} \right)$$
$$\operatorname{r}_{f}(\boldsymbol{x}) \Leftrightarrow \boldsymbol{x} - \boldsymbol{p} \in \partial f(\boldsymbol{p}) \text{ with } \partial f(\boldsymbol{p}) \text{ the subgradies}$$

 $p = \operatorname{prox}_{f}$ ient of f $\boldsymbol{x}^{\scriptscriptstyle +} = \operatorname{prox}_f(\boldsymbol{x}^{\scriptscriptstyle +}) \Leftrightarrow \boldsymbol{x}^{\scriptscriptstyle +} = \arg\min f(\boldsymbol{x})$