Selected recipes for inverse problems Ferréol Soulez

Norms

 $\|\boldsymbol{x}\|_2^2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle = \boldsymbol{x}^\dagger \boldsymbol{x} = \sum_{n=0}^{N-1} |x_n|^2 = \sum_{n=0}^{N-1} x_n^* x_n$ ℓ^2 norm
 $|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \le ||\boldsymbol{x}||_2 ||\boldsymbol{y}||_2$ (Cauchy-Schwartz) ℓ^2 norm $\|\boldsymbol{x}+\boldsymbol{y}\|_2^2 = \|\boldsymbol{x}\|_2^2 + \|\boldsymbol{y}\|_2^2 + \|\boldsymbol{y}\|_2^2$ $\frac{2}{2} + 2 \langle x, y \rangle$ $\|\boldsymbol{x}\|_{p}^{p} = \sum_{n=0}^{N-1} |x_{n}|^{p}$, $p \ge 1$
 $\|\boldsymbol{x} + \boldsymbol{y}\|_{p} \le \|\boldsymbol{x}\|_{p} + \|\boldsymbol{y}\|_{p}$ triangular inequality $\|\mathbf{y}\|_2^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle$, $p \ge 1$ ℓ^p n ℓ^p norm $\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$ triangular inequality
 $\|\mathbf{H}\|_F^2 = \sum_{n,m} |H_{i,j}|^2 = \text{tr}(\mathbf{H}^\dagger \mathbf{H})$ Frobenius norm

Inverse

H H ∈ $\mathbb{C}^{N \times N}$ is called invertible (also nonsingular or nondegenerate) if these guide a matrix C guess that $\mathbf{H} \in \mathbb{C}^{N \times N}$ is called invertible (also
there exists a matrix **G** such that:

$$
\mathbf{H}\mathbf{G}=\mathbf{G}\mathbf{H}=\mathbf{I}
$$

 $H G = GH = I$
 $G = H^{-1}$ is unique and is the inverse of **H**
 $(H M)^{-1} M^{-1} H^{-1}$ $({\bf H} {\bf M})^{-1} = {\bf M}^{-1} {\bf H}^{-1}$ for any **^H** *,***^M** invertible $\left(\mathbf{H}^{\dagger}\right)^{-1} = \left(\mathbf{H}^{-1}\right)^{\dagger}$

■ **trace:** tr(**H**) =
$$
\sum_n H_{n,n} = \sum_n \lambda_n
$$

\ntr(**H**[†]) = tr(**H**)* tr(α **H** + β **G**) = α tr(**H**) + α tr(**H**)
\n■ **determinant:** det(**H**) = $\prod_n \lambda_n$
\ndet(**H**) ≠ 0 \iff **H** is invertible
\ndet(**HG**) = det(**H**) det(**G**)
\n**H**(**HH**) = 1/ det(**H**)

- **c** columns of **U** are eigenvectors of **H H**[†],
 columns of V are eigenvectors of **H**[†] **H**,
 E \sum = $\sqrt{\text{diag}(\text{eig}(\mathbf{H} \mathbf{H}^{\dagger}))}$,
- columns of **V** are eigenvectors of **H**[†] **H**,
 $\sum \Delta = \sqrt{\text{diag}(\text{eig}(\mathbf{H} \mathbf{H}^{\dagger}))},$
-
- $\frac{2}{F} = \sum_i \sigma_i^2$
- *■* rank(**H**): number of non zero singular values,

Inversion lemmas & Woodbury identity

 $\mathbf{B}^{-1}\mathbf{V} (\mathbf{A} - \mathbf{U}\mathbf{B}^{-1}\mathbf{V})^{-1} = (\mathbf{B} - \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1} \mathbf{V}\mathbf{A}^{-1}$ $(B^{-1}V)(A - UB^{-1}V)^{-1} = (B - VA^{-1}U)^{-1}VA^{-1}$
 $(A - UB^{-1}V)^{-1}UB^{-1} = A^{-1}U(B - VA^{-1}U)^{-1}$
 $(A + UBV)^{-1} = A^{-1} - A^{-1}U(B^{-1} + VA^{-1}U)^{-1} V A^{-1}$

Moore-Penrose pseudo inverse

The pseudo inverse of $H = U \Sigma V^{\dagger}$ writes $H^+ = V \Sigma^+ U^{\dagger}$ with $\Sigma_{i,i}^{+} = \begin{cases} \sum_{i,i}^{-1} \text{ if } \\ 0 \text{ of } \end{cases}$ *i*,*i* if *σ_{<i>i*} \neq 0,
0 otherwise *.*

-
-
- **H H**⁺ **H** = **H** and **H**⁺ **H H**⁺ = **H**⁺
■ **H** is square and rank(**H**) = $N \Rightarrow$ **H**⁺ = **H**⁻¹
■ **H** is broad: rank(**H**) ≤ *N* and **H**⁺ = **H**[†] (**H H**[†])⁻¹
- $\left(\mathbf{H}^{\dagger} \mathbf{H} \right)^{-1} \mathbf{H}^{\dagger}$

Selected recipes for inverse problems Ferréol Soulez

Derivatives

Derivation rules

 $\partial (\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \partial \mathbf{A} + \beta \partial \mathbf{B}$ linearity ∂ (**AB**) = (∂ **A**) **B** + **A** (∂ **B**) ∂ (**A**^{−1}) = −**A**^{−1} (∂ **A**) **A**^{−1} $\partial (\mathbf{A}^{\dagger}) = (\partial \mathbf{A})^{\dagger}$ *∂x* †*y [∂]^x* = *∂y* †*x [∂]^x* = *y* $\frac{\partial x^\dagger {\mathbf A} x}{\partial x} = \left({\mathbf A} + {\mathbf A}^\dagger \right) x$ $\frac{\partial f \circ g(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left.\sum_{m=0}^{M-1} \frac{\partial f}{\partial u_m} \frac{\partial u_m}{\partial \boldsymbol{x}}\right|_{\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})}$ chain rule $\frac{\partial (\mathbf{A} \, \boldsymbol{x} - \boldsymbol{y})^\dagger \mathbf{B}(\mathbf{A} \, \boldsymbol{x} - \boldsymbol{y})}{\partial \mathbf{A}} = \left(\mathbf{B} + \mathbf{B}^\dagger \right) \, \left(\mathbf{A} \, \boldsymbol{x} - \boldsymbol{y} \right) \, \boldsymbol{x}^\dagger$

CONSTRANSIST
Continuous Fourier transform

Discrete Fourier Transform

Circular convolution matrix ^H

Circular convolution matrix H
 $H_{0,i} = h_i$ impulse response (PSF) $\mathbf{H} = \mathbf{F}^{-1} \text{ diag}(\widehat{\boldsymbol{h}}) \mathbf{F}$ $H_{0,i} = h_i$ impulse response (PSF)
 $\mathbf{H} = \mathbf{F}^{-1} \text{ diag}(\hat{\boldsymbol{h}}) \mathbf{F}$ diagonalization by Fourier
 $\hat{\boldsymbol{h}} = \mathbf{F} \mathbf{h}$ eigenvalues spectrum $\mathbf{H} = \mathbf{F}^{-1} \text{ diag}(\hat{\boldsymbol{h}}) \mathbf{F}$ diagonalization by Fourier
 $\hat{\boldsymbol{h}} = \mathbf{F} \, \boldsymbol{h}$ eigenvalues spectrum

Continuous probability distribution

Continuous probability distribution
 $x \in \mathbb{C}^N$ is a continuous random vector, it has a probability density

function (ndf) fu(a) such that for all $\triangle \subseteq \mathbb{C}^N$. $\mathbf{x} \in \mathbb{C}^N$ is a continuous random vector, it has a p
function (pdf) $f_X(\mathbf{x})$ such that, for all $\mathbb{A} \subseteq \mathbb{C}^N$: function (pdf) $f_X(\boldsymbol{x})$ such that, for all $A \subseteq \mathbb{C}^N$. such that, for all $\mathbb{A} \subseteq \mathbb{C}^N$:
Pr($\mathbf{x} \in \mathbb{A}$) = $\int_{\mathbb{A}} f_X(\mathbf{x}) d\mathbf{x}$

 $Pr(\boldsymbol{x} \in \mathbb{R})$
 $\bar{\boldsymbol{x}} = \text{E}(\boldsymbol{x}) = \langle \boldsymbol{x} \rangle = \int_{-\infty}^{+\infty} \boldsymbol{x} f_X$ $\Pr(\boldsymbol{x} \in \mathbb{A}) = \int_{\mathbb{A}} f_X(\boldsymbol{x}) d\boldsymbol{x}$
 $\lim_{-\infty} \boldsymbol{x} f_X(\boldsymbol{x}) d\boldsymbol{x}$ Expectation (mean) $\bar{\mathbf{x}} = \mathbf{E}(\mathbf{x}) = \langle \mathbf{x} \rangle = \int_{-\infty}^{+\infty} \mathbf{x} f_X(\mathbf{x}) d\mathbf{x}$ Expectation (mean)
 $\mathbf{E}(\alpha \mathbf{x} + \beta \mathbf{y} + \gamma) = \alpha \mathbf{E}(\mathbf{x}) + \beta \mathbf{E}(\mathbf{y}) + \gamma$ linearity $\text{E}(\alpha \mathbf{x} + \beta \mathbf{y} + \gamma) = \alpha \text{ E}(\mathbf{x}) + \beta \text{ E}(\mathbf{y}) + \gamma$
 $\textbf{C}_{\mathbf{x}, \mathbf{y}} = \text{Cov}(\mathbf{x}, \mathbf{y}) = \text{E}(\mathbf{x} \mathbf{y}^{\dagger}) - \text{E}(\mathbf{x}) \text{ E}(\mathbf{y})^{\dagger}$ $\mathbf{C}_{x,y} = \text{Cov}(\mathbf{x}, \mathbf{y}) = \text{E}(\mathbf{x}\mathbf{y}^{\dagger}) - \text{E}(\mathbf{x}) \text{E}(\mathbf{y})^{\dagger}$
 $\mathbf{C}_x = \text{Cov}(\mathbf{x}, \mathbf{x}) = \text{E}(\mathbf{x}\mathbf{x}^{\dagger}) - \text{E}(\mathbf{x}) \text{E}(\mathbf{x})^{\dagger}$ $\mathbf{C_x} = \text{Cov}(\mathbf{x}, \mathbf{x}) = \text{E}(\mathbf{x} \mathbf{x}^{\dagger}) - \text{E}(\mathbf{x}) \text{E}(\mathbf{x})^{\dagger}$
 $\mathbf{C_x}$ is an Hermitian matrix of size $N \times N$.

† Cross-covariance Covariance

Independence & Uncorrelation

Convexity

Gradient descent

Gradient descent
\n
$$
f: \mathbb{C}^N \to \mathbb{R}
$$
 is convex and differentiable with Lipschitz gradient L:
\n $\|\nabla x - \nabla y\|_2 \le L \|\boldsymbol{x} - \boldsymbol{y}\|_2$
\nThe following sequence converges toward a minimizer of f in $O(1/k)$:
\n $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \gamma \nabla f(\boldsymbol{x}^{(k)})$ with $\gamma \in]0, 1/L]$

Newton's method

Newton's method
 $f: \mathbb{C}^N \to \mathbb{R}$ is convex and twice differentiable, the sequence: $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - (\nabla^2 f(\boldsymbol{x}^{(k)}))^{-1} \nabla f(\boldsymbol{x}^{(k)})$
converges toward a minimizer of *f* in *O*(1/*k*²):

Projection

Projection
 P $\in \mathbb{C}^{N \times N}$ is a projection on a subset $\mathbb{S} \subseteq \mathbb{C}^N$ and its indicator *i*_S: $\mathbf{P} \in \mathbb{C}^{N \times N}$ is a pr $\mathbf{P} \mathbf{x} = \argmin_{\mathbf{y}} \left(\imath_{\mathbb{S}} \right)$ $\int_{\partial \Omega}$ $P \in \mathbb{C}^{N \times N}$ is a projection on a subset $\mathbb{S} \subseteq \mathbb{C}^N$ and its indicator $i_{\mathbb{S}}$:
 $P \mathbf{x} = \underset{\mathbf{y}}{\arg \min} \left(i_{\mathbb{S}}(\mathbf{y}) + \frac{1}{2} ||\mathbf{x} - \mathbf{y}||^2 \right)$ with $i_{\mathbb{S}}(\mathbf{x}) \begin{cases} 0 & \text{if } \mathbf{x} \in \mathbb{S}, \\ +\infty \text{ otherwise.} \$

P P = **P**. idempotent $\|\mathbf{P} \mathbf{x} - \mathbf{P} \mathbf{y}\|_2 \leq \|\mathbf{x} - \mathbf{y}\|_2$ S is convex \Rightarrow **P** is non-expansive $\mathbf{x}^{(k+1)} = \mathbf{P} (\mathbf{x}^{(k)} - \gamma \nabla f(\mathbf{x}^{(k)}))$ projected gradient descent $(k+1) = \mathbf{P}(\boldsymbol{x}^{(k)} - \gamma \nabla f(\boldsymbol{x}^{(k)}))$

Proximity operator

Proximity operator
f: a lower semi-continuous convex function, its proximity operator is:

semi-continuous convex function, its proximity ope
\n
$$
prox_f(\mathbf{y}) = arg min \left(f(\mathbf{y}) + \frac{1}{2} ||\mathbf{x} - \mathbf{y}||^2 \right)
$$

 $p = \text{prox}_f(\boldsymbol{x}) \Leftrightarrow \boldsymbol{x} - \boldsymbol{p} \in \partial f(\boldsymbol{p})$ with $\partial f(\boldsymbol{p})$ the subgradient of f $y = \text{prox}_f(\boldsymbol{x}) \Leftrightarrow \boldsymbol{x} - \boldsymbol{p} \in \partial f(\boldsymbol{p})$ with
 $y + \Delta = \text{prox}_f(\boldsymbol{x}^+) \Leftrightarrow \boldsymbol{x}^+ = \text{arg min}_\boldsymbol{x} f(\boldsymbol{x})$