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Notations

α (lower case) scalar
α∗ complex conjugate of α
x ∈ CN (boldface lower case) complex vector
N (upper case) cardinal (number of elements)
H ∈ CN×M (boldface upper case) linear operator (matrix)
f : CN → CM (lower case) function
L2(RN) space of squared-integrable function
H : L2(RN)→ L2(RM) (calligraphic upper case) operator

acting on functions

Basic properties

[Hx]m =
∑

nHm,n xn vector matrix product
[H G]m,k =

∑
nHm,nGn,k matrix product

H (αx + β y) = αHx + βHy linearity
(x× y)n = xn yn element wise product

I =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

 identity matrix

A = diag(a) =


a0 0 0 . . . 0
0 a1 0 . . . 0
0 0 a2 . . . 0
... ... ... . . . ...
0 0 0 . . . aN−1

 diagonal matrix

Adjoint, scalar product(
H†
)
i,j

= H∗j,i adjoint (transpose conjugate)

〈x,y〉 =
∑N−1

n=0 x
∗
n yn = x†y dot (or scalar or inner) product

〈Hx,y〉 =
〈
x,H† y

〉
adjoint formal definition

(αH + βG)† = α∗H† + β∗G†

(H G)† = G†H†

Norms

‖x‖2
2 = 〈x,x〉 = x†x =

∑N−1
n=0 |xn|

2 =
∑N−1

n=0 x
∗
n xn `2 norm

|〈x,y〉| ≤ ‖x‖2 ‖y‖2 (Cauchy-Schwartz)

‖x + y‖2
2 = ‖x‖2

2 + ‖y‖2
2 + 2 〈x,y〉

‖x‖pp =
∑N−1

n=0 |xn|
p , p ≥ 1 `p norm

‖x + y‖p ≤ ‖x‖p + ‖y‖p triangular inequality

‖H‖2
F =

∑
n,m |Hi,j|2 = tr(H†H) Frobenius norm

Inverse
H ∈ CN×N is called invertible (also nonsingular or nondegenerate) if
there exists a matrix G such that:

HG = GH = I
G = H−1 is unique and is the inverse of H
(H M)−1 = M−1 H−1 for any H ,M invertible(
H†
)−1 = (H−1)†

Eigenvalue & eigenvectors of H ∈ CN×N

λi ∈ C and vi ∈ CN are the ith eigenvalue and eigenvector respectively.
They satisfy:

Hvi = λi vi

It leads to the eigendecomposition:
H = Q diag(λ) Q−1 ,

where the columns of V are the N eigenvectors of H.

� λ = eig(H) is the spectrum of H,
� C = max|λ|

min|λ| is the condition number,
� rank(H) is the number of non-zero element of λ,
� if λi 6= 0, ∀i, H is invertible and H−1 = Q diag(λ)−1 Q−1 ,

Peculiar matrices
� Unitary: Q†Q = Q Q† = I
� Hermitian: H† = H and H = Q diag(λ) Q† with λ ∈ RN

and Q unitary
� Positive semi-definite: λi ≥ 0 , ∀i ⇐⇒ x†Hx ≥ 0, ∀x
� Toeplitz: Hi,j = hi−j,
� Circulant: Toeplitz with Hi,j = h(i−j) mod N

Trace and determinant
� trace: tr(H) =

∑
nHn,n =

∑
n λn

tr(H†) = tr(H)∗ tr(H G) = tr(G H)
tr(αH + βG) = α tr(H) + α tr(H)

� determinant: det(H) =
∏

n λn

det(H) 6= 0 ⇐⇒ H is invertible det(H†) = det(H)∗

det(H G) = det(H) det(G) det(H−1) = 1/ det(H)

Singular value decomposition
For all matrices H ∈ CN×M there exists two unitary matrices U ∈
CN×N and V ∈ CM×M and a real non-negative diagonal matrix
Σ ∈ CN×M (singular values: σi = Σi,i , ∀i ≤ min(M,N)) subject to:

H = U Σ V†

� columns of U are eigenvectors of H H†,
� columns of V are eigenvectors of H†H,
� Σ =

√
diag (eig (H H†)),

� ‖H‖2
F =

∑
i σ

2
i

� rank(H): number of non zero singular values,

Inversion lemmas & Woodbury identity

B−1V (A−UB−1V)−1 = (B−VA−1U)−1 VA−1

(A−UB−1V)−1 UB−1 = A−1U (B−VA−1U)−1

(A + U B V)−1 = A−1 −A−1 U (B−1 + V A−1 U)−1 V A−1

Moore-Penrose pseudo inverse
The pseudo inverse of H = U Σ V† writes H+ = V Σ+ U† with

Σ+
i,i =

{
Σ−1
i,i if σi 6= 0 ,

0 otherwise .
� H H+ H = H and H+ H H+ = H+

� H is square and rank(H) = N ⇒ H+ = H−1

� H is broad: rank(H) ≤ N and H+ = H†
(
H H†

)−1

� H is tall: rank(H) ≤M and H+ =
(
H†H

)−1 H†
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Derivatives

Ji,j =
[
∂x
∂y

]
i,j

= ∂xi
∂yj

Jacobian matrix

[∇f ]i = ∂f
∂xi

Gradient vector

[∇2f ]i,j = ∂2f
∂xi ∂xj

Hessian matrix

Derivation rules

∂ (αA + βB) = α ∂A + β ∂B linearity
∂ (A B) = (∂A) B + A (∂B)
∂ (A−1) = −A−1 (∂A) A−1

∂
(
A†
)

= (∂A)†

∂x†y
∂x = ∂y†x

∂x = y
∂x†Ax
∂x =

(
A + A†

)
x

∂f ◦ g(x)
∂x =

∑M−1
m=0

∂f
∂um

∂um
∂x

∣∣∣
u=g(x)

chain rule

∂(Ax−y)†B(Ax−y)
∂A =

(
B + B†

)
(Ax− y) x†

Continuous Fourier transform

f̂ (ν) = F (f ) (ν) =
∫ +∞
−∞ f (t)e−2 iπ ν t dt forward

f (t) = F−1
(
f̂
)

(t) =
∫ +∞
−∞ f (ν)e2 iπ ν t dν inverse

F (αf + βg) = αf̂ + βĝ linearity

F (f (t− t0)) = e−2 iπ ν t0f̂ (ν) shift

F (e2 iπ ν0 tf (t)) = f̂ (ν − ν0) modulation

F (f (a t)) = 1
|a|f̂
(
ν
a

)
scaling

F (f ∗) (ν) = f̂ ∗(−ν) conjugation∫ +∞
−∞

∣∣∣f̂ (ν)
∣∣∣2 dν =

∫ +∞
−∞ |f (t)|2 dt Plancherel-Parseval

f̂ (0) =
∫ +∞
−∞ f (t) dt integration

F
(
f (n)) = (2 iπ ν)n f̂ (ν) differentiation

F (f ∗ g) = f̂ ĝ convolution

F (f ? f ) =
∣∣∣f̂ ∣∣∣2 autocorrelation

Discrete Fourier Transform

F =


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

... ... ... . . . ...
1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

 with ω = e−−2ı π
N

the N th root of unity.

F−1 = 1
N F† orthogonality

U = 1√
N

F U is unitary

‖x‖2
2 = 1

N ‖Fx‖
2
2 Plancherel-Parseval

‖x‖1 ≤ ‖Fx‖1 ≤ N ‖x‖1

Circular convolution matrix H
H0,i = hi impulse response (PSF)

H = F−1 diag(ĥ) F diagonalization by Fourier

ĥ = Fh eigenvalues spectrum

Continuous probability distribution
x ∈ CN is a continuous random vector, it has a probability density
function (pdf) fX(x) such that, for all A ⊆ CN :

Pr(x ∈ A) =
∫
A
fX(x) dx

x̄ = E(x) = 〈x〉 =
∫ +∞
−∞ x fX(x) dx Expectation (mean)

E(αx + β y + γ) = αE(x) + β E(y) + γ linearity
Cx,y = Cov (x,y) = E(xy†)− E(x) E(y)† Cross-covariance
Cx = Cov (x,x) = E(xx†)− E(x) E(x)† Covariance
Cx is an Hermitian matrix of size N ×N .

Independence & Uncorrelation

Pr(X | Y ) = Pr(X) Independence
fX,Y (x,y) = fX(x) fY (y) Independence
Cov (αx + β y + γ) = α2 Cov (x) + β2 Cov (y) Uncorrelation
Cov (x,y) = 0 Uncorrelation
independence ⇒ uncorrelation uncorrelation ; independence
Pr(X | Y ) = Pr(Y |X) Pr(X)

Pr(Y ) Bayes rule

Convexity
f : CN → R is strictly convex if and only if:
f (λx + (1− λ)y) < λf (x) + (1− λ) f (y) ∀x,y, λ ∈]0, 1[ .

x+ = arg min
x

f (x) global minimum

p ∈ ∂f (x)⇔ f (x)− f (x′) ≥ 〈p,x− x′〉 ,∀x′ subgradient

Gradient descent
f : CN → R is convex and differentiable with Lipschitz gradient L:

‖∇x−∇y‖2 ≤ L ‖x− y‖2

The following sequence converges toward a minimizer of f in O(1/k):
x(k+1) = x(k) − γ∇f (x(k)) with γ ∈]0, 1/L]

Newton’s method
f : CN → R is convex and twice differentiable, the sequence:

x(k+1) = x(k) −
(
∇2f (x(k))

)−1
∇f (x(k))

converges toward a minimizer of f in O(1/k2):

Projection
P ∈ CN×N is a projection on a subset S ⊆ CN and its indicator ıS:

Px = arg min
y

(
ıS(y) + 1

2 ‖x− y‖
2
)

with ıS(x)
{

0 if x ∈ S ,
+∞ otherwise .

P P = P . idempotent
‖Px−Py‖2 ≤ ‖x− y‖2 S is convex ⇒ P is non-expansive
x(k+1) = P

(
x(k) − γ∇f (x(k))

)
projected gradient descent

Proximity operator
f : a lower semi-continuous convex function, its proximity operator is:

proxf(y) = arg min
y

(
f (y) + 1

2
‖x− y‖2

)
p = proxf(x)⇔ x− p ∈ ∂f (p) with ∂f (p) the subgradient of f
x+ = proxf(x+)⇔ x+ = arg min

x
f (x)


