Selected recipes for inverse problems

Ferréol Soulez

a (lower case) scalar
o complex conjugate of a
xeCV (boldface lower case) complex vector
N (upper case) cardinal (number of elements)
He VM (boldface upper case) linear operator (matrix)
f.CN M (lower case) function
LA (RN) space of squared-integrable function

H: LARYN) — LARM) (calligraphic upper case) operator

acting on functions

Basic properties

[H 'T}m = Zn Hm,n Ty

[H G]mtk: = Zn Hmﬂ Gn,k
H(ax+pfy)=aHx+fHy

(ﬂ}' X y)n = iL’” yn

vector matrix product
matrix product
linearity

element wise product

100 ...0
010...0
I=]001...0 identity matrix
000...1
a0 0... 0
0a 0... 0
A =diag(la)= |0 0 ay... 0 diagonal matrix
000...ay

Adjoint, scalar product
(HY). = H:,

Y]

adjoint (transpose conjugate)
(x,y) = 27?;0] iy, = zly dot (or scalar or inner) product
Hz,y) = (z,H'y) adjoint formal definition
(aH+ BG) = o Hl + p* Gl

(

HG) =G H'

)5 = (z,2) = xlz = 10
[z, )| < [lzll, yll,
I+l = llzl5 + lyll5 + 2 (2, v)
lllf = S0 el p > 1

|z +yll, < 1], + v,

[H|[E =Y, [ iyl = te(HH)

|2, = E,};Ul xha, 22 norm

(Cauchy-Schwartz)

P norm
triangular inequality

Frobenius norm

H ¢ CY*V is called invertible (also nonsingular or nondegenerate) if
there exists a matrix G such that:

HG=GH=1
G = H™ is unique and is the inverse of H
HM) '=M 'H"'
CURSIC

-1

for any H, M invertible

Eigenvalue & eigenvectors of H ¢ CV*V

X\ € Cand v; € CV are the i cigenvalue and ecigenvector respectively.
They satisfy:
Hov, = \v;
It leads to the eigendecomposition:
H=Qdiag(\)Q ",

where the columns of V are the N eigenvectors of H.

B A\ = cig(H) is the spectrum of H,

_ max]A|
BC= min|A|
B rank(H) is the number of non-zero element of X,

W if \; # 0, Vi, H is invertible and H™! = Q diag(A) ' Q !,

is the condition number,

Peculiar matrices

M Unitary: Q' Q=QQf =1

B Hermitian: H = H and H = Q diag(\) Q with A € RV
and Q unitary

B Positive semi-definite: \; > 0, Vi <= «/Hz >0, V&

B Toeplitz: H;; = h;_;,

B Circulant: Toeplitz with H;; = h(_j) mod v

Trace and determinant

W trace: tr(H) =) H,,=> .\
tr(H) = tr(H)*
tr(cH+ [ G) =a tr(H) + « tr(H)

tr(HG) = tr(G H)

B determinant: det(H) =[], A,

det(H) # 0 <= H is invertible
det(HG) = det(H) det(G)

det(H) = det(H)*
det(H™!) = 1/ det(H)

Singular value decomposition

For all matrices H € CY*M there exists two unitary matrices U €
CVN and V € CMM and a real non-negative diagonal matrix
3 € CV*M (singular values: o; = %, Vi < min(M, N)) subject to:
H=UXZVI
B columns of U are cigenvectors of H HY,
B columns of V are eigenvectors of Hf H
diag (eig (HHT)),
2
B [H][; =
B rank(H): number of non zero singular values,

2
iJi

Inversion lemmas & Woodbury identity
B'V(A-UB'V) ' =(B-VA'U) 'VA~!
(A—UB'V)'UB'=A"'UB-VA U
(A+UBV)'=A'—A'UB '+ VAU VA

Moore-Penrose pseudo inverse

The pseudo inverse of H = UX VT writes HY = V 2 UT with
s {Zzil ifo; 40,
b 0 otherwise.
BHH H=HandH"HH'=H"
B H is square and rank(H) = N = H" =H"!
B H is broad: rank(H) < N and H* = HI (HH') "
B His tall: rank(H) < M and H" = (H'H) “tuf
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Derivatives
Jacobian matrix

Gradient vector

Hessian matrix

Derivation rules

9(aA+BB)=adA + 0B
9(AB) = (0A) B+ A (0B)

linearity

(A =—-A"10A) A}

9 (A1) = (9A)

dxt Ayt

By

Ozt Az

drhAr — (A+Afx

0/"25@) _ Zﬁfgol 657{"% e chain rule

dAz—y)BAz—
dAs—y BAsy) _ (B4 Bl (Aw—y) af

Continuous Fourier transform

—~

Fw)=F(f)w) = [ fltye 7t at forward
flt)y=F" (f) (t)= [ fw)etimtdy inverse
Flaf +Bg) = af + 53 lincarity
F(ft—t) = e 27" f(w) shift
F (XTI f(t)) = f(V - ) modulation
F(flat)) = ﬁf(%) scaling
F( f conjugation

Plancherel-Parseval

fA’(O) = fj;o f(t)dt integration
F (f(n)) = (2irv)" f(v) differentiation
F(fxg)= f g convolution
F(fxf)= mz autocorrelation

1 1 | R 1

1 w wr o w1 . o
F=11 wz w4 wz(N,l) with w =e™ %

, - , the N root of unity.

1 wN-1 2N=1) . (N-1)(N-1)
F'= %F* orthogonality
U= \/—%F U is unitary
|5 = +|F x| Plancherel-Parseval

2, < [[Fall, <N [,

Circular convolution matrix H

Hy;=h; impulse response (PSF)
H=F"! diag(fl) F diagonalization by Fourier
h=Fh eigenvalues spectrum

Continuous probability distribution

x € CV is a continuous random vector, it has a probability density
function (pdf) fy(a) such that, for all A C CV:

Prix € A) = /AfX(a:) dx

z=E(x) = fj;oa: fx(z)dx
E(ax + fy+7) =ak(x)+ SE(y) +~
Cyy = Cov (z,y) = E(zy') — E(z) E(y)’
C, = Cov (z, z) = E(xx!) — B(z) E(x)
C, is an Hermitian matrix of size N x V.

Expectation (mean)
linearity
Cross-covariance

Covariance

Independence & Uncorrelation

Pr(X |Y)=Pr(X) Independence
Fer@y) = fx(@) fr(y) Tndependence
Cov(ax + By +7) =a? Cov(z)+ 5 Cov(y) Uncorrelation
Cov (z,y) =0 Uncorrelation

independence = uncorrelation

Pr(X | Y) _ Pl(Y}Ll)g/;)l(X)

uncorrelation % independence

Bayes rule

Convexity

f 1 CN = Ris strictly convex if and only if:
fAz+(1=Ny) <Af(z)+ (1) fly) Vo, y, A €0, 1]

x = argmin f(x)
xr

peif(x) < flx) - f(a) = (px — ) ,Va!

global minimum

subgradient

Gradient descent

f:CYN = Ris convex and differentiable with Lipschitz gradient L:
IVa—Vyl, <L o -yl
The following sequence converges toward a minimizer of f in O(1/k):
25 = ) — v f(&®)) with v €]0,1/L]

Newton’s method

f:CN = Ris convex and twice differentiable, the sequence:
-1
2+ — k) _ (Vz f(:c“'))) v f(z®)

converges toward a minimizer of f in O(1/k?):

Projection

P € CY*V is a projection on a subset S C CV and its indicator 1s:

_ : il a2 . 0 ifxes,
Pe= argynnn (ZS(?J) 3z =yl ) with 1s(@) { —+00 otherwise .
PP=P. idempotent

[Pz —Pyl, < [lz -yl
) = Pp (a:("') — fyvf(w(kd))

S is convex = P is non-expansive

projected gradient descent

Proximity operator

[+ alower semi-continuous convex function, its proximity operator is:

. 1
pros () = angmin (1) + 5 o~ )
Yy

p = proxg(x) < x — p € df (p) with 9f(p) the subgradient of f
x" = prox(x’) &zt = argmin f(x)
T



